Newcastle
+ University

Translating a VDM Model to
Kapture

Joe Hare, Leo Freitas and Ken Pierce
Overture 2025, 11/06/2025, Aarhus Denmark

Newcastle
+ University




Newcastle
+ University

Motivation

* Explore the usefulness of a requirements modelling tool.
* Assurance/safety case focused with links to DO178-C / DO-333 certification

e Learn Kapture and begin modelling with it
* Task undertaken by an undergraduate student with no prior FM experience

* Claim extra safety standards with Kapture
 Compare abstractions: Kapture x VDM-SL



Newcastle
+ University

The Existing VDM model

* VDM-SL (1.5KLOC) abstraction of CANDO C code (3KLOC).
* Based on the CANDO optrode CMOS system for brain pace maker

* Model of the FSM controlling the behaviour of optrodes
 State transitions are determined by the current state and an event variable

* Defines the operations run in each state




Newcastle
+ University

The Existing VDM model

Command =

Eal ]

Event

0G_OP_MEM E> | <RUN_MEM E> | <
E> | <READ LED E> | <READ DIAG E>




Newcastle
University

The Existing VDM Model

<ERROR> |-> {|->1, 0 State
<SPT_TX_FINISH> [-> |
<send_packet_3>,
¢<send_packet_ 6>,
<send_packet 9>,
<send_packet_14>,
<send packet 24>
s =» s(<start>) in set { <get cmd>, <error > })
<SPI_RX_FINISH> |-> {
receive packet_27>
receive packet 28>
receive packet 29>
receive packet_3@>

<receive_packet 27>,
<receiv acket 28>,
<receiv acket 29>,
<receive_packet_3@: FSM =

{<chip_rst> in set dom in set {<get cmd>,<error_>})

| -3
|-»
|-»
| -3

map Event to StateMap;

<LED ON_E> |-» { <get cmd> |-»> <LED on>},

<SET_WLED E> |-» { <get_cmd> |-» <set vLED:},

<SET_BRE_E> |-> { <get_cmd> |-» <set_brex}, USSR,

<LED_ALL_OFF_E> |-> { <get_cmd> |-> <LED_all off>}, inv fsm ==

<PROG_DELAY DIAG E> |-> { <get_cmd> |-> <prog_delay diag>}, dom fsm = ALL_EVENTS

<PROG_OP_MEM_E> |-> { <get_cmd> |-> <prog_op_mem_13}, n

<RUN_MEM_E> |-> { <get_cmd> |-> <run_mem>}, Forall in set dom fsm & is_TStateMap(fsm(e));
<PROG_CLK _CNT_E»> { <get cmd> |-> <prog_clk cnt>},
<RESET_AMNA E> { <get_cmd> |-»> <reset_ana>},
<SET_ANA_E> |-> { <get_cmd> |-» <set_anax}, CandoFSM = TFSM
<CONFIG_REC_E> { <get_cmd> |-» <config_rec>}, ;

<PROG_ID E> |->» { <get cmd> |-> <prog ID:},

<DUMMY_E> |-> { <get cmd> |-» <dummy>},

<READ_LED_E> |- { <get_cmd> |-» <read_LED:},

<READ_DIAG_E>» { <get_cmd> |-» <read_DIAG>},

<READ LFP _E> |->» { <get cmd> |-> <read LFP»},

<GET_CMD_E> [-> {

inv fsm ==

<error_»> |-» <get_cmd>,
<chip_rst»> |-» <get cmd>




Newcastle
University

The Existing VDM Model

EFERIL = manual( )==
( (
if(tx cnt < 2) then

i
LY

while(not command finish flag) do

F

printState();

currentEvt := <GET_CMD E>; transition();
tx cnt = tx cnt + 1;
execute( );

printstate();
tx cnt = 8;

currentEvt := <CONT:>;
rd command finish flag;

execute() ==
(

rd currentst
* tx_cont, currentEvt
pre currentst = <error_>

post currentEvt in set { <CONT>, <GET_CMD E> }; <get_cmd> get_cmd(currentCmd),
<LED off> LED off(),

<send packet 3> send packet(),
<LED_on> LED_on(),
<set vLED> set VLED(),

cases currentst:
<starts start(),




An Overview of Kapture

* A tool for writing clear software requirements in English

* English constructs Converted to CSP/Stateflow for validation
* Final conversion to Matlab Simulink Stateflow

* Designed for high assurance

e calculating C code from high-level requirements (Claw?Z)

* Compliance with DO-178C and DO-333

* Applied to various industries (nuclear, avionics, medical)

e Part of an EU innovate grant with industry partners

Newcastle
+ University



Newcastle
University

An Overview of Kapture

®

File  Edit Selection Filters

d and Replace  Help D-R75Q Kapture
Project Identifier 1

Assumplions | Data Dictionary = Definitions | Requirements = Template Viewer

S o8
3 &3 Filters
D Title Name 2 R
Match all filtlers = Apply | Clear | Advanced
» > v l=Rl=
Filter Condition Ooptions
yi fsm ) v = = +
MODE-1.00 state state Lk
TYPE-1.00 events evenls v |
TYPE-2.00 commands commands NN
[YPE-12.00 Flag Flag v &
Y11 packets v
CONST-1.00 packet length packet_length v v
CONST-2.00 max count max_count v ¥
TYPE-8.00 bytes bytes Lt 4
TYPE-9.00 count count Ll
IYPE-3.00 packet data packet_data v ¥
TYPE-11.00 Address Address Ll
v2 FSM3 v
S1G-1.00 event event Lk
4.00 command command L
6.00 command finish flag command_finish_flag Lt 5

.00 optrode TX finish aptrade_TX_finish v ¥
S51G-10.00 optrode RX finish optrode_RX_finish v
S1G-7.00 tx_cnt x_ent L L
S1G-9.00 bytes_raceived bytes_received v &
S1G-8.00 bytes_sent bytes_sent Ll
21 s_packet v
5161400 s_packet_data s_packet_data o W
S1G-15.00 5_packet_command s_packet_command v ¥
SIG-16.00 s_packet_address 5_packet_address v
v

22 next




Model Translation: States and Events

constant declaration
® mode declaration
signal declaration

type declaration

The mode-declaration template allows modes of a
component to be identified.
The template has the form:

The component Component
shall have the following Modes:
... Mode_i ...

[InitialMode]

The fields:
« Component and Mode i are mandatory
« InitialMode is optional

Newcastle
+ University



Newcastle
+ University

Model Translation: Rounds

Trigger On Event Template @

<LED ON E> |-> { <get cmd> |-> <LED on>},
<SET VLED E> |-> { <get _cmd> |-> <set VLED>},
<SET BRE_E> |-> { <get cmd> |-> <set bre>},
<LED ALL OFF E> |-> { <get _cmd> |-> <LED all off>}, + (Index) Optional
<PROG_DELAY DIAG E> |-> { <get cmd> |-> <prog delay diag>},
<PROG_OP MEM E> |-> { <get cmd> |-> <prog op mem 1 > P Botonal
<RUN MEM E> |-> { <get cmd> |-> <run_mem>},
<PROG CLK CNT E> [ <get cmd> |-> <prog clk cnt>}, If
<RESET ANA E> ( <get cmd> |-> <reset ana>}, T slale gLt i e slivt R

= - 5 = - and The current eventis CONT
<SET_ANA E> [ <get cmd> |-> <set ana>}, occurs, then
<CONFIG REC E> [ <get cmd> |-> <config rec>},
<PROG ID E> ( <get cmd> |-> <prog ID>}, £ (BoneRdn) S
<DUMMY_ E> { <get cmd> |-> <dummy>}, + (Subsequently) Optional
<READ LED E> [ <get cmd> |-> <read LED>},
<READ DIAG E> <get cmd> |-> <read DIAG>}, g o
<READ_LFP_E> [ <get_cmd> |-> <read LFP>}, The fsm is in state LED off at the end of the round

holds.



Newcastle
Q) Lniversity

Model Translation: Operations

: Case Template @
receive packet() ==

(

+ (Delay) Optional

At each time step,

1f(optrode RX finish) then

(  bytes received := bytes received + 1; + (Until) Optional
11 bytes—recelved s PACKET_LENGTH the first of the following cases that is true shall apply:
currentEvt := <SPI RX FINISH>
ey = + X (Clause) Optional
else
when

The state is in the receive states group at the start of the round
and signal optrode RX finish equals true

and signal bytes received + 1 is less than constant packet length
occurs then

signal next_bytes received equals signal bytes received + 1
currentEvt := <CONT>; and signal event equals events.SPI RX_FINISH

o 5 I shall also hold
s_packet := nil;
+ X (Clause) Optional

optrode RX finish :=

when
) The state is in the receive states group at the start of the round
else and signal optrode RX finish equals true
i and signal bytes received + 1 equals constant packet length
( occurs then

e signal next_bytes received equals signal bytes received + 1
optrode RX finish := 0 o ¢

and signal event equals events.CONT
and signal next optrode RX finish equals false

and s_packet s nil
currentEvt := <ERROR>; shail %6 Hold

s_packet = Hil,; + X (Clause) Optional
when

The state is in the receive states group at the start of the round
and signal optrode RX finish equals false
occurs then
signal event equals events.ERROR
currentst and signal next optrode RX finish equals false

- = . and s packetis nil
currentevt, s_packet, optrode RX finish, bytes received shall aiso Hold




Newcastle
+ University

Model Translation: Operations

manual()==
(
while command_finish_flag

printState();

transition();

execute();

>

printState();

command_finish_flag;

execute() ==
(

ses currentSt:
start(),
d> get_cmd(currentCmd),
) off> LED off(),
1 packet 3> send_packet(),
LED_on(),
set VvLED(),




Newcastle
+ University

Incrementing values issue

+ X (Clause)

when
The fsm is in state error _at the start of the round
N and signal tx_cnt is less than 2
1T (tx_cnt < 2) then occurs then
signal event equals events.GET_CMD _E
and signal next tx_cnt equals signal tx_cnt + 1
shall also hold

currenteEvt := <GET CMD E>;
tx_cnt = t>x cnt + 1;
If

signal tx_cnt does not equal signal next tx cnt
occurs, then

else

tx cnt := 0; X (AtSomePoint)

currentEvt := <CONT>; at some point

+ (Subsequently)
X (Within)

but within 0 rounds,

signal tx_cnt equals signal next tx_cnt
holds.



Newcastle
+ University

Results and Testing

* Results tested by creating manual traces using the Kapture model
* Traces had same results as the ones generated by VDM-SL model

 Completed within four weeks

* >90% of the (~1000 LOC) VDM model translated into 113 Kapture
requirements

State Operations Requirements
40%

T% -
Defining Data and Definitions

FSM Looping Behaviour

Proportion of time spent translating
different parts of VDM model into
Kapture

State Transition Requirements




Newcastle
+ University

Issues Encountered During Development

* Learning curve
* Lack of tools for creating and editing en masse
* Using Kapture for low-level requirements

 Shift in abstraction between VDM and Kapture
* Feedback from D-RisQ



Conclusions and Future Work

 Successful translation in a short period of time
* A readable set of requirements for CANDO

* Further improvements to the model
e Modelworks
 Further collaboration with D-RisQ

Newcastle
+ University



	Slide 1: Translating a VDM Model to Kapture 
	Slide 2: Motivation
	Slide 3: The Existing VDM model
	Slide 4: The Existing VDM model
	Slide 5: The Existing VDM Model
	Slide 6: The Existing VDM Model
	Slide 7: An Overview of Kapture
	Slide 8: An Overview of Kapture
	Slide 9: Model Translation: States and Events
	Slide 10: Model Translation: Rounds
	Slide 11: Model Translation: Operations
	Slide 12: Model Translation: Operations
	Slide 13: Incrementing values issue
	Slide 14: Results and Testing
	Slide 15: Issues Encountered During Development
	Slide 16: Conclusions and Future Work

